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Research Interests and Background

• Background

• PhD (17’-20’), Section for Cognitive Systems, Technical University of Denmark (DTU)

• Visiting Scholar (6 months), Department of Statistical Science, Duke University, NC, USA

• Research Assistant (16’-17’), Section for Cognitive Systems, DTU

• M.Sc. Eng. (14’-16’), Mathematical Modelling and Computation,  DTU

• Research

• Statistical Science and Machine Learning

• Unsupervised and multi-modal learning, uncertainty quantification, and Bayesian statistics

• Application areas

• Chemistry and Chemometrics, Neuroscience, Computer Science

• Aims

• Improving capabilities (automating, speedups).

• Expanding capabilities (new insights).

• Bridging statistics with domain experts.
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A Few Applications
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Functional MRI
(x-axis x y-axis x z-axis x time)

Fluorescence Spectroscopy
(emission spectra x excitation spectra x samples)

Electroencephalogram (EEG)
(channels x time x frequency)

Gene expressions

(Individuals x genes x tissues)

=



A Few Applications
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Image: ESA/ExoMars 392257 ID

Planetary and Space Science
ESA/ExoMars Trace Gas Orbiter 

(~10m spectras, ~10k channels)

Computer Science
Parts based representation

Chemistry and Chemometrics
• Gas Chromatography
• Liquid Chromatography
• Fluorescence spectroscopy
• Near infrared spectroscopy
• 1D or 2D separation



Comprehensive Two-Dimensional Gas Chromotography (GCxGC)

• Gathering GCxGC data (per sample)

• Issues

• Each sample is high dimensional and multi-modal (~1600 𝑡1
𝑅x 800 𝑡2

𝑅 x 600 𝑚𝑧).

• Possibly thousands of compounds.

• Lots of nasty problems (sensor saturation, overlapping components, baseline, 
temporal correlation, shift between samples).

• Manual identification is prohibitively expensive.

injector

GC 
column 1

GC column 2

modulator detector (mass spectrometer)

60 minutes few seconds

Organize 
data

GC-1

GC-2

Figure: Dillen Augustijn, 
CAT, KU FOOD



Identifying Chemical Compounds

• Each subarea contains one or more compounds

• Peak identification is non-trivial for most areas

• Areas overlap

• Larger areas → more compounds → harder to 
model (and computationally expensive)

GC-1 
(min)

GC-2 
(s)

Images are slightly modified from originals by Dillen Augustijn, CAT, KU FOOD



Statistical Science, Machine Learning, Data Science, etc.

• Goal: Learn the parameters 𝜽 under model 𝑓 ∗
• Supervised: Learn from outcome Y and observed data X,

𝒀 = 𝑓 𝑿, 𝜽 + 𝜺
• Unsupervised: Learn from observed data X

𝑿 = 𝑓 𝜽 + 𝜺

• Find 𝜽 by minimizing the error 𝜺.

• Least squares, Maximum-likelihood

• Alternatively: Characterize 𝜽 via the probability of 
obtaining the parameters.

𝑷(𝜽|𝑿, 𝒀, … )
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Parameter Estimation

• Observed data X, unknown model 

parameters 

• Bayesian Inference

• Likelihood, P(X|) 

• Prior knowledge, P()

• Posterior distribution, 

P(|X) = P(X|) p() / p(X)

• Probability of observing the data,

P(X) =  P(X|) P() d

• Estimating  based on

• Maximum likelihood (ML)

• Maximum a posteriori (MAP)

• Full posterior distribution (Bayesian)

Example: A single univariate parameter 
centred at 0. How certain is this estimate?

• Benefits of Bayesian inference

• Principled way of incorporating prior 
information

• Characterize uncertainty via the posterior 
distribution

8

A             B                       C

 



Why Bayesian Statistics?

Benefits

• Inherent penalization of model 
complexity

• Robustness to noise and outliers

• Guards against model over-specification

• Automatic relevance determination

• Posterior distribution and uncertainty 
quantification

• A principled way to include prior 
knowledge

• Prediction on held-out slices or sub-
tensors

Issues/Challenges

• The posterior distribution is intractable

• Approximation vs. reliability of posterior 
estimate

• Interpretability vs. inference methods

• Model specification and sensitivity to 
choice of prior

• Conjugate vs. non-conjugate inference

• Restricts likelihood and prior choices



Automatic Relevance Determination: 
Fluorescence Spectroscopy 
• Mixed samples

• Unmixing pure spectra and concentration (based on 10 initial 
components)
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Automatic Relevance Determination: 
Fluorescence Spectroscopy 
• Mixed samples

• Unmixing pure spectra and concentration (based on 100 initial 
components)
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Homo- and Heteroscedastic Noise

• 3-way fluorescence 
spectroscopy data

• Noise variance has scale 
indeterminacy
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Bayesian CP assuming homoscedastic noise

Bayesian CP assuming heteroscedastic noise (all modes)



ARD and Het. Noise Example: Functional MRI

• Functional Magnetic Resonance Imaging

• B=30 persons/samples, ~60000 voxels, ~300 timepoints

• Models sample and voxel specific noise (𝝉(𝑏)) and sparse spatial maps (A)
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Hinrich, J. L., Nielsen, S. F., Riis, N. A., Eriksen, C. T., Frøsig, J., Kristensen, M. D., ... & Mørup, M. (2017, March). Scalable group level probabilistic sparse factor 
analysis. In Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International Conference on (pp. 6314-6318). IEEE.



fMRI: Task Activated Component (Motor Cortex Related)

• Bayesian Factor Analysis

• Hetero. noise

• Bayesian Sparse Factor Analysis

• Hetero. noise and sparsity

• Independent Component Analysis

• Group-ICA, A consists of independent signals.
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fMRI: Blinking Light (Visual Cortex Related)

• Bayesian Factor Analysis

• Hetero. noise

• Bayesian Sparse Factor Analysis

• Hetero. noise and sparsity

• Independent Component Analysis

• Group-ICA, A consists of independent signals.
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Probabilistic PARAFAC2 
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• Two Bayesian approaches constrasted
to direct fit (MLE).

• Under homoscedastic normal noise.

Correct model order (D=D*=4) Incorrect model order (D=6)

• Orthogonality through, either
• constrained Matrix Normal (cMN)
• von Mises-Fisher Matrix (vMF)

[1] Jørgensen, P. et al. ”Probabilistic Parafac2” (Arxiv)

[2] Jørgensen, P. et al. (2019). Analysis of Chromatographic Data using the Probabilistic
PARAFAC2. In 33rd Conference on Neural Information Processing Systems.

[3] Kiers, H. A., Ten Berge, J. M., & Bro, R. (1999). PARAFAC2-Part I. A direct fitting 
algorithm for the PARAFAC2 model. Journal of Chemometrics, 13(3-4), 275-294.



Probabilistic PARAFAC2 
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• Two Bayesian approaches constrasted to direct fit (MLE).
• Under heteroscedastic normal noise.

Correct model order (D=D*=4) Incorrect model order (D=6)

[1] Jørgensen, P. et al. ”Probabilistic Parafac2” (Arxiv)

[2] Jørgensen, P. et. al. (2019). Analysis of Chromatographic Data using the Probabilistic
PARAFAC2. In 33rd Conference on Neural Information Processing Systems.

[3] Kiers, H. A., Ten Berge, J. M., & Bro, R. (1999). PARAFAC2-Part I. A direct fitting 
algorithm for the PARAFAC2 model. Journal of Chemometrics, 13(3-4), 275-294.



Takeaways and Future Work

Takeaways

• A principled way to include prior 
knowledge

• Posterior distribution and uncertainty 
quantification

• New tool for model comparison

• Automatic penalization of model 
complexity

• Robustness to noise, outliers, and model 
over-specification.

• No two-factor degeneracy

Future work

• Incorporation of chemical knowledge

• Likely (mass) spectras

• Elution shape and retention time

• Sensor saturation

• Temporal/spatial correlation

• Statistical 

• Improved uncertainty estimation

• Uniqueness, local optima and global 
solution

• Learning causal structures.

• Interpretability vs. model inference

• Conjugate vs. non-conjugate inference
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